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General relations are derived describing behaviour of a series of ideally agitated crystallizers and 
these are solved for individual cases according to the degree of supersaturation in individual 
stages. The assumptions frequently made with the mathematical modelling of a cascade of crystalli
zers arc critically evaluated together with conclusions resulting from individual models for 
distribution of production rates among individual stages of the cascade. 

In studies published earlier1
,2 relations have been derived for calculation of the depen

dence of the mean size of crystals on the production rate of a simple continuous 
agitated crystallizer. But these relations cannot be directly used for calculation of the 
production rate of a series of agitated crystallizers. 

Though this problem is very frequently studied, only general relations 5 are for
mulated in literature for individual simplified models. They have been solved only 
for the simplest cases3 - 8 of a cascade of agitated crystallizers having the same 
size which were operated under the same supersaturation, mostly with nucleation in 
the first stage. Only Bransom8 presents basical relations for a cascade formed by two 
crystallizers of different size where he also notes simplification of relations which 
can be obtained at the assumption Lts = const. Dependence of the mean size of pro
duct crystals Lp on the capacity of the crystallizer P has been published until now 
only for a simple agitated crystallizer1

,2. The effect of the cascade crystallizer capacity 
on the size of product crystals could have been only estimated9

-
11

. Distribution 
of capacities among individual stages of the cascade has been published only in a sim
plified form and only for the simplest models12

,13. It should also be mentioned in this 
respect that relations have been published for calculation of the granulometric 
composition of a series of two crystallizers with recyc1e

14
. 

The aim of this study is to derive, on basis of general relations describing behaviour 
of a series of agitated crystallizers, .. 9gncrete design equations for the individual types. 
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1816 Nyvlt, Moudry, Veverka: 

THEORETICAL 

Let us consider a continuously operated series of ideally agitated crystallizers with 
their block diagram given in Fig. 1. For the whole system as well as for its individual 
stages the material and energy balances together with the population balance must 
be valid .. The general form of these balances is 

Accumulation = Inlet - Oulet + Formation. (1) 

Material balance of the i-th stage of the cascade has a general form 

In steady state an accumulation of crystals in the crystallizer does not take place, i.e. 

dm)dt = 0 (3) 

and the material balance is simplified into the form 

(4) 

A special case of the material balance is the balance of supersaturation of the solu
tion. In general it may be written e.g. in the form 

dilc/dt = s + (dilcJdt)g + (dilc/dt)n , (5) 

where the first right-hand-side term represents the rate with which supersaturation 
forms, the second (negative) term is the decrease of supersaturation resulting from 
the crystal growth and the third (also negative) term is the decrease of supersaturation 
resulting from nucleation. Both these terms are dependent on supersaturation and 
these dependences can be expressed by semiempirical relations 9 ,lo 

(6) 
and 

(7) 

Vk_1,Ck_1>nk_1 Vk'Ck,nk 
mk _1 mk 

FIG. 1 

Cascade of Agitated Crystallizers 
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Mathematical Models of a Cascade of Ideally Agitated Crystallizers 1817 

Balance of energy is not considered here in detail, we only take into consideration 
its validity. Finally, the third balance is the balance of number of crystals. If the 
density of population of crystalsS , l1 is expressed by 

n = lim (LlNjLlL) = dNjdL, (8) 
ilL-->O 

where LlN is the number of crystals in a unit mass of suspension with the sizes in the 
range L ± LlLj2, the balance of number of these crystals in the i-th stage of the cas
cade may be written in the form 

(9) 

The first right-hand-side term represents the number of crystals in the considered 
size range entering the i-th stage, the second term number of these crystals leaving 
the i-th stage and the third term change of number of crystals in the considered size 
range resulting from their growth. In steady state accumulation of crystals does not 
take place so that 

(10) 

and Eq. (9) can be arranged into the form 

(11) 

where the mean residence time of solution in the i-th stage is 

(12) 

If we further consider the validity of the McCabe LlL-law according to which the linear 

crystallization rate 
(13) 

is independent on the crystal size L, the final relation is obtained 

(14) 

By solving the system of linear differential equations (14) for all stages of the cas
cade the population distribution function ni(L) is obtained . By its use a number 
of quantities may be expressed which are of importance in the design of crystallizers: 

The over-all number of crystals in a unit mass of suspension in the i-th stage is 

Collection Czechoslov. Chem. Commun. /Vol. 381 (1973) 



1818 Nyvlt, Moudry, Veverka: 

(I 5) 

Number of crystals of sizes larger than a certain size L is 

N~(L) = f~ ni(L) dL . (16) 

The surface area of crystals in a unit mass of suspension in the i-th stage is 

(17) 

Mass of crystals in a unit mass of suspension in the i-th stage is 

(18) 

Mass of crystals larger than a certain size Lis 

(19) 

Granulometric product composition (cummulative fraction in % of a sample larger 
than the size considered) is 

G;k) = 100 m: jmk . (20) 

Mean mass of product crystals is 

(21) 

Mean surface area of the product crystals is 

(22) 

Further if dimensionless residence time of crystals in the cascade is defined as 

k 

Z = L/( L Lit' i) , (23) 
i=l 

for the crystal size Lp in the greatest fraction, from the condition for maximum, holds 

(24) 

Collection Czechoslov. Chern. Cornrnun. /Vol. 38/ (1973) 



Mathematical Models of a Cascade of Ideally Agitated Crystallizers 1819 

Finally by arranging relation (11) by use of Eq. (8) the over-all balance of number 
of crystals can be obtained in the i-th stage, which has the form 

(25) 

and which together with the material balance (5) forms the basis for calculation 
of the crystallizer production rate. In the following parts of this study, these general 
relations are applied to individual concrete cases. 

Cascade of Agitated Crystallizers with Different Supersaturation in Individual 
Stages and Nucleation in All Stages 

The method of control of a cascade of agitated crystallizers is usually arranged so 
that the production rate of the first stage is greatest and it is in the following stages 
successively decreasing (driving force, i.e. the difference of temperatures in the 
crystallizer and of cooling water, or the mass of evaporated solvent in the first stage 
is greatest) or all the capacity is more or less uniformly distributed among all stages ' 
of the cascade. The supersaturation in the cascade (and according to Eqs (6) and (7) 
to its value proportional rates of crystal growth and nucleation) is because of the 
above discussed production rate distribution not uniform and is usually decreasing 
toward the end of the cascade. In this case it is necessary to solve the cascade as 
a system of crystallizers individually described by equations given in the general 
part of this study. Solution of the first stage of the cascade can be made according 
to relation derived for a simple agitated crystallizer. From Eq. (14) which for the 
first stage takes the form dnl/dL = - nl/( L1tsl)' the distribution function of the 
number of particles in the first stage becomes nl(L) = nOI exp [ -LI( Llfsl)]. 

In general for the i-th stage of the cascade, solution of differential equation (14) 

equals to 

ni(L) = nOi exp [-LI(Lits)] + i ~ nOhLhtSh.L i~~---
i I ( ) i-I (L}si)i-h-I 

h=l Vi J=h II (L}Si - LI f
sl

) 

I=h 
I*i 

. {exp [ - LI( L}sJ] - exp [ - LI( Litsi)]} . (26a) 

For example the differential equation for the second stage of the cascade has the 

solution 
n2(L) = noz exp [ -:-LI(Lztsz )] + [(Vl/vz) nOlLltsl]/(LltSl - Lztsz) . 

. {exp [-LI(L1tsl)] - exp [-L/(Lztsz)]}. 

By substituting the population distribution function (26) into Eqs (15) to (22) we 
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1820 Nyvlt, Moudry, Veverka: 

obtain: The total number of crystals in a unit mass of suspension in the i-th stage 

i 

Ni = L nOh(vhjvi) LhtSh ; 
h=l 

number of crystals with their sizes larger than L 

. . i-1 i-1 (L.l.)i-h-l 
N;(L) = Litsi . nOi exp [ -L/(Ljtsj)] + L nOh(vjvi)LhtSh L _i--,,--,-J~SJ,,---_ _ 

h=l j=h II(L}sj _ Lltsl) 
l=h 
l*j 

surface area of crystals in a unit mass of suspension in the i-th stage 

i-1 
Ai = 2{3(Li lSi)3 nO i + 2{3 . L nOh(Vh!Vi) Lhisb . 

b=l 

mass of crystals suspended in a unit mass of suspension in the i-th stage 

of which mass of crystals with sizes larger than Lis 

i-1 
. exp [ -L/(L;tSi)] + lY.{}c· L nOh(vh!Vi) Lhtsh · 

b=l 

+ 6 L~l~) exp [ -L/(Ljtsj)] - (LiisiL3 + 3 i!;l;iL2 + 

+ 6 ~ls~L + 6 Lilsi) exp [ - L!(Ljlsi)]} .. 

(15a) 

(16a) 

(17a) 

(lSa) 

(19a) 

collection Czechoslov. Chern. Commun. /Vol. 381 (1973) 



Mathematical Models of a Cascade of Ideally Agitated Crystallizers 1821 

The granulometric product composition is calculated from Eqs (20), (1Sa) and (19a), 
mean mass of crystals from Eqs (21), (18a) and (lSa) and finally the mean surface 
area of crystals from Eqs (22), (17a) and (1Sa). 

The mean size of crystals is calculated from the condition (24) which takes here 
the form 

i-I 

LitSinOi(Lj(LJs) - 3) + L nOh(vhjvi) LhtSh . 
h=1 

.iil (L}Sjy~h-l {[(LjLjtsj) - 3~~~P (L~ll;;1 - Ljlt,jl) L- [(LjLJSi) - 3]} = 0 . 

j=h l~h(Ljtsj - L,ts') (24a) 
I*j 

For condition: 

(27) 

which is fulfilled only in suitably designed sizes of individual stages of the cascade 
which must be indirectly proportional to the corresponding linear rates of crystal 
growth, the above given equations are simplified to 

i 

Ni = Lts L nOjVjjvi ; 
j=1 

( " -)3 .2 ~ ( j ) (j + I)! . 
Ai = f3 Lts l.f... Vi-j+l Vi n O(i-j+l) (" _ 1)' ' 

)=1 ] . 

. -)4 .3 ~ ( j ) (j + 2)! . 
m i = (X(2c(Lts l.f... Vi-j+1 Vi nO(i_j+l) (. _ 1)' ' 

)=1 ] . 

(26b) 

(lSb) 

(17b) 

(18b) 

+ • _ 4.3 ( i n O(i_j+l) j+2 (j + 2)! zi+
2

-
h
). ( ) 

/til = (X(2c(Lts) I exp (-z)" J1Vi-i+t!Vi" (j _ I)! h~O (j + 2 _ h)!) , 19b 
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1822 Nyvit, Moudry, Veverka: 

The mean residence time of crystals in the cascade may be calculated from the condi
tion 

k 

L vk-j +dVk' nO(k-j+l») [zj+2/U - I)! - (j + 2) zj+l/U - l)!] = 0 (24b) 
j=l 

to which then corresponds the mean size of product crystals 

(28) 

Calculation of the dependence of the mean size of crystals on crystallizer production 
rate is rather complex and must be made from stage to stage beginning with the first 
stage of the cascade. From the balance of number of crystals (25) at the condition 
of steady state for the i-th stage of the cascade holds 

(25a) 

or in combination with relation (7) with additional arrangements we obtain 

(29) 

For the specific crystallizer production rate it holds 

(30) 

Simultaneously the balance of supersaturation (5) is valid in the form 

(5a) 

The specific crystallizer capacity is related with the supersaturation rate by relation 

k 

P = LSj. 
j=l 

(31) 

The surface area of crystals can be expressed by use of their mass and mean size 
as may be demonstrated e.g. by comparison of relations (17b), (18).and (28), so that 
relation of the type 

(32) 
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Mathematical Models of a Cascade of Ideally Agitated Crystallizers 

is obtained, where 

i 

Z L vi-i+t!vi · nO(i-j+l) [(j + 1)!/U - 1)!] 
({Jl = _J,-'=~/ _ _____ _____ ~ __ 

L vi-j+dvi nO(i-j+l) [(j + 2)!/U - 1)!] 
j=1 

with the coefficient ({J2 defined simultaneously by equation 

1823 

(32a) 

(33) 

By substituting Aj from Eq. (32) into relation (5a) and mp from Eq. (33) into Eq. (30) 
two independent equations for variables L, sand Ac are obtained, by solution of which 
the concrete values of these variables for individual stages of the cascade can be 
determined. 

Cascade of Agitated Crystallizers with Different Supersaturation in Individual 

Stages with Nucleation in the First Stage Only 

If in the first stage there forms such a number of crystals that suffices to compensate 
the supersaturation in other stages only by their growth without nucleation taking 
place at a reasonable rate, the relations presented in the preceding part of this study 

are simplified (for i > 1) to 

i-I 

Nt(L) = nOlLl1Sl(v l /Vi) L 
j=l 

Collection Czechoslov. chem. Commun. /Vol. 38/ (1973) 
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II (L}sj - Lltsl) 
1=1 
I*i 

(15c) 

(16c) 

(17c) 
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i-I (LjtSjy-2 
m~ = IY.QcnoILltst(V1/Vi) L: "7

i
-_-=-1 -'----'~---

j=1 II(L}Sj - LI isI) 
1=1 
Lid 

. {( L}sp + 3Lft;jL2 + 6L;t;jL + 6Ltt;J . exp [ -L/(Ljisj)] -

- (LitSiL3 + 3L~isiL2 + 6L~i;iL + 6Lii~) . exp [-Lj(LitSi)]} . (1ge) 

The granulometric product composition is again calculated by substituting Eqs (18e) 
and (1ge) into Eq. (20), the mean specific mass of product crystals by substituting 
Eqs (18e) and (15e) into Eq. (21), and finally the mean surface area of product 
crystals by substituting Eqs (17e) and (l5e) into Eq. (22). The last two relations can 
be simplified to 

k-1 k-1 k-1 k-1 

mp = IY.Qc{( L: Liisi)3 + 3( L: (Li tsi)2 L: LJSi) + 2 L: (Lii si)3} (21 c) 
i=1 i=1 i = 1 i=1 

and 
k-t k - l 

Ap = f3[ L: (LitSi)2 + ( L: Litsi?] . (22e) 
i = 1 i=1 

The condition (24) for calculation of the mean size of product crystals becomes 

(24e) 

For the condition of constant product Lts (27), the above given relations are con
siderably simplified: 

ni = (Vt/Vi) no1 zi
-

1j(i - I)! . exp (-z) , (26d) 

Ni = nOlLtsvl/Vi ; (15d) 

Ai = (VI/Vi) nOlf3(Lis)3 i2(i + l)!j(i - I)! ; (17d) 

mi = (Vt/Vi) nOlIY.Qc(Lts)4 i3(i + 2)!j(i - I)! ; (18d) 

collection Czechoslov. Chem. Commun. IVol. 38/ (1973) 



Mathematical Models of a Cascade of Ideally Agitated Crystallizers 1825 

. i+2 (. + 2)1 Zi+2-j 
m( = (vt/vJno11Y-llc(Us)4 i 3 exp (-z) . L . I :. (19d) 

j = O (I + 2 - J)! (z - 1)! 

k+2 
G~k) = lOOexp(- z).L[zk+2- j/(k + 2 -j)!]. (20d) 

j=O 

The dependence of G~k) on dimensionless time z is plotted in Fig. 2, where are also 
denoted the inflex points corresponding to z. From condition (24) it follows 

Further, 

z=k+2. 

mp = [cxQcL~/(k + 2)2] . (k + l)!/(k - 1)! ; 

Ap = f3I;(k + l)!/(k - 1)! (k + 2)! . 

F;om comparison of Eqs (17d) and (18d) we obtain 

In these equations the mean size of crystals is given by relations 

Ii = (i + 2)1.15 or Ip = (k + 2)1.1s • 

(24d) 

(21d) 

(22d) 

(34) 

(35a,b) 

The balance of number of crystals (25) for nucleation taking place only in the first 
stage of the cascade simplifies considerably to 

(25b) 

which means that the same number of crystals which forms in a unit of time in the 
first crystallizer at a steady state will, in the same time interval, leave the last stage 
of the cascade as a product. Eq. (30) is thus simplified to the form 

(30a) 

Simultaneously the balance of supersaturation in the form of Eqs (5a) and (31) holds. 
Further procedure is similar to the preceding one: By substituting Ai (34) into Eq. 
(5a) and mp (Eq. (33) in Eq. (30a) we obtain again two independent equations for 
variables I, sand .1c. By their solution concrete values of these variables for individual 

stages of the cascade may be determined. 

Collection Czechoslov. chem. Comman. /Vol. 38/ (l97:n 



1826 Nyvlt, Moudry, Veverka: 

Cascade of Agitated Crystallizers with the Same Supersaturation in Individual 
Stages and with Nucleation in All Stages 

The same supersaturation in all stages means that the linear crystallization rate in all 
stages is constant 

(36) 

and the nucleation rate in all stages of this cascade is constant as well 

(37) 

The general solution of differential equation (14) has then the form which differs 
from the general relation (26a) only by condition (36). The equations are simplified 
in case if 

(38) 

The product Lts is also constant in all stages of the cascade, so that Eq. (27) is valid 
again. Eq. (26) then becomes 

k 

nk = no L: (Vk- i +ljvk) zi-Ij(i - 1)!. exp (-z). (26e) 
i=1 

Dependence of nkjno on dimensionless time z is plotted in Fig. 3 for the condition 

VI = '" = Vi = v. 

From Eq. (26e) and the respective relations it follows 

i 

Ni = noLts L: Vj/Vi ; 
j=l 

A - {3(L'-)3 '2~ Vi - j + 1 (j + 1)! . - no t l ~ -- - - - . 
I s j=l Vi (j - 1)! ' 

(L'-)4'3 ~ Vi - J+ 1 (j + 2)! mi = no<X(lc ts l ~ --- -.-- -' ; 
j=l Vi(J - 1)! 

(39) 

(15e) 

(17e) 

(18e) 

(1ge) 
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Mathematical Models of a Cascade of Ideally Agitated CrystalIizers 1827 

Values mk / m I in Table I are given as a function of number of stages of the cascade k 
for condition (39). Granulometric composition of the product is given by relation 

G~k) = 100 exp (-z) ( i (i + ~)-l . (± ~ if (i + 2)! Zi+2- i
). 

i =l (i - 1)! i=l vk(i - 1)! j = O (i + 2 - j)! 

(20e) 

Results of calculation of granulometric composition according to Eq. (20e) are for 
condition (39) plotted in Fig. 4. 

From condition (24) for the dimensionless residence time of crystals with greatest 

TABLE I 

Numerical Values of Some Functions Calculated for a Cascade of k Agitated Crystallizers of 
Equal Sizes Operating with Constant Supersaturation and Nucleation in All Stages 

100

1 

G, 

50 

FIG. 2 

k 

4 
5 

10 

I11k / ml 

1·0 3·000 
5·0 3·791 

15·0 4·591 

35·0 5·399 

70·0 6·213 

715·0 10·354 

2 3 4 5 

Granulometric Composition of the Product 
from a Cascade of k Crystallizers with 

Nucleation in the First Stage 

Collection Czechoslov. Chern. Commun. IVo!' 381 (1973) 

1f13(k) ({II(k) ({I4(k) 

0·2222 1·0000 0·3333 
0·2753 1·0110 0·2167 
0·3100 1·0202 0'1654 
0·3336 1·0284 0·1351 
0·3502 1·0355 0·1147 
0·3865 I-0619 0·0661 

FIG. 3 

Relative Population Density of Crystals 
nk/ nO in Dependence on Dimensionless Resi
dence Time of Crystals and Number of 
Stages of the Cascade 
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occurrence in the inflex point must hold 

k 

I Vk- i+1/Vk . [zi+ 2 /(i - 1)! - (i + 2) Zi+l/(i - I)!] = O. (24e) 
i=l 

Size of these crystals is again given by Eq. (28). Values of z obtained as the solution 
of Eq. (24e) for condition (39) are given in Table 1. Further holds the relation 

(2Ie) 

where the values 

k (i + 2)! -3 
({J3(k) = L Vk - i + 1/Vk · -.--/kz 

i=l (l - I)! 
(40) 

are for condition (39) also given in Table I. Finally for the surface area of crystals 
suspended in a unit mass of solution in the last stage, the following relation is again 
obtained 

(32) 

where the function q>j(k) given by Eq. (32a) equals, for this case, 

({Jl(k) = z (± (~ + 1)! . Vk - i + 1)!,( ± (~ + 2)! . Vk - i + 1). (32b) 
i = 1 (l - I)! Vk i = t (l - I)! Vk 

Values of function ({Jl(k) are for condition (39) given in Table I. Values ({Jt(k) are 
obviously very close to 1·0 so that by neglecting it only negligible error would be made. 
For a steady state in the cascade, balance of the number of crystals (25) must hold 
which in this case for the k-th stage becomes 

(25e) 

As the nucleation rate in all stages of the cascade is constant, it holds 

k 

Nn + (Vk-l/Vk) Nk-t!ts = I(V)Vk)kn(AcY/(!XQcL~). (41) 
j=l 

If the nucleation rate is expressed by use of Eq. (6) and the rate of crystal growth 
by Eq. (7) or the linear crystallization rate by relation9 

(42) 

Collection Czechoslov. Chern. Commun. !Vol. 38/ (973) 
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itholdsNn = KLn/g (43a); where k (3aQ )n/S 

K = aQc~~ k
g

f3c 

is a system constant. Eq. (41) then takes the form 

k 

Nn + (Vk-t!Vk) Nk-t!ts = KLn /g L Vj/Vk' 
j=l 

It can be written for the right-hand-side of Eq. (25e) with respect to Eq. (2Ie) 

so that by arranging Eq. (25e) the following relation is obtained 

-3 -3/( . n/g ~ ( /) (i + 2)!) Lp = pz aQcKL 1... Vk - i + 1 Vk -.-- - • 
i=l (I-i)! 

1·0'r-c---,----,,---..:-- -,----

H 2345 

FIG. 4 FIG. 5 

1829 

(43b) 

(44) 

(45) 

(46) 

Si!P 

Granulometric Composition of the Product 
from a Cascade of k Crystallizers with 
Nucleation in All Stages 

Relative Supersaturation Rate Sj/ P in the j-th 
Stage of the Cascade of k Crystallizers with 
Nucleation in All Stages (left) and Relative 
Supersaturation Intensity sJ P in the i-th 
Stage of the Cascade of k Crystallizers of 
Equal Sizes with Nucleation in the First 
Stage for Constant Supersaturation in All 
Stages (right) 

Collection Czechoslov. Che!O. co!O!Oun. /Vol. 381 (1973) 



1830 Nyvlt, Moudry, Veverka: 

The material balance (5) holds simultaneously. If we realize that the mass of formed 
nuclei is negligible in comparison " with the mass precipitated by crystal growth 
we may write 

which can be further arranged into the form (48). 

(48) 

Values CfJ4(k) defined by relation 

( 

k .2 j (i + 1) !)/( 2 k (i + 2)!) 
CfJ4(k) = ,Il ,I vj-i+t!Vk · (--:--1)' k.I Vj - i + 1!Vk' (-'--)' 

J=1 1=1 1 -. J=1 1 - 1 . 
(49) 

are for condition (39) given in Table 1. If now the linear crystallization rate L is expres
sed from Eq. (48) and substituted into Eq. (46), the final relation is obtained 

(50) 

where 

_ (3gj n)+1 (k (i + 2) !)-gj n 
CTk = 3CfJ4(k) B(zLn) . I Vk-i+t!Vk • -'-.-

i=1 (I - 1)! 
(51) 

and B is the formerly4 defined system constant which includes only the physico
chemical constants characterizing the given system 

(52) 

The derived relations are valid in the case of nucleation and crystal growth rates 
equal in all stages of the cascade i.e. for constant supersaturation in all stages of th~ 
cascade. If this condition is to be fulfilled, the supersaturation rate in all stages 
of the cascade must be proportional to the surface area of the crystals present, which 
is given by Eq. (17e). With regard to relations 

(5b) 
and 

k k 

P = ISj = kl~c)gIAj (31a) 
j=1 j=1 

we may write 

Collection Czechoslov. Chern. Cornrnun. /Vol. 38/ (1973) 
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(53) 

Values SjJp calculated from Eq. (53) are, as a function of the ordinal number of the 
j-th stage in the cascade having k stages and for condition (39), given in Fig. 5 on the 
left. From presented data it is obvious that the considerable part of the crystallizer 
production rate (e.g . 94% for a two-stage and 67% for a five-stage cascade) is again 
situated in the last stage of ,a cascade while the admissible supersaturation intensity 
in first stages is very low. This is of course quite disadvantageous as concerns the 
production rate of the whole crystallizer. 

Cascade oj Agitated Crystallizers with the Same Supersaturation in Individual 
S tages and with Nucleation in the First Stage Only 

Calculation of the granulometric composition of the product from a cascade of 
agitated crystallizers having the same size of individual stages with a nucleation 
in the first stage has been published 1,3,5,9 many times. Nevertheless, the dependence 
of the mean size of product crystals on the over-all capacity of the cascade has not 
yet been published. At first we are considering a rather general case of a cascade 
where the size of individual stages is not consta.nt. In this case the cascade is described 
by equations 

n
i 

= nOltsl(VIJVi)iil i t~j-2 . {exp [ - LJ(Ltsj)] - exp [ - LJLtsi)]} ; 

j=1 IIf,YSj - lsi) (26J) 
I*j 

(l5J) 

(17J) 
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+ 3t;j(L/LY + 6t;/L/L) + 6t;J exp [ -L/(LtsJ] -
-[1si(L/L)3 + 3t;lL/LY + 61;i(L/L) + 6t;J exp [- L/(Ltsi)]}. (19/) 

The granulometric composition of the product is again calculated by substituting 
relations (I8/) and (19/) into Eq. (20). From relations (2ie) and (22e) the mean mass 
and average surface area of crystals are obtained 

k-l k-l k-l k-l 

mp = IXQcL3 [( I tsY + 3( I tsiY I lsi + 2 I l;J ; (21/) 
i=1 i=1 i=1 i=1 

k-I k-I 

Ap = /3L2[( I lSiY + I t;J . (22/) 
i=1 i=1 

Condition (24) for calculation of the mean size of product crystals becomes 

(24/) 

The balance of the number of crystals (25) is again simplified into the form (25b) 
or (30a) so that the following relation is valid 

k-l k-l k-I k-I 

(VI/Uk) kn(~e)" lSI£3[( I1si)3 + 3( I tsi )2 L lsi + 2 I t;J = 
i=1 i=1 i= 1 i=1 

k 

= L~tSk I Si ' (54) 
i=1 

This equation represents the relation between the supersaturation and the corres
ponding supersaturation rates Si' Linear crystallization rate L calculated from Eq. 
(24/) related with the mean size of product crystals Lp enables introduction of L as 
another variable. The second independent equatio~ between the variables ~e, sand L 
is obtained from the supersaturation balance (5b) which, by neglecting the nuclea
tion term and by use of Eqs (17/), (i8/) and (42), becomes 
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(55) 

By solving Eqs (54), (55) and (24f) simultaneously with equation 

(56) 

the dependence between the crystallizer production rate P and mean size of product 
crystals Lp is obtained. The presented relations can be considerably simplified if all 
stages of the cascade have the same size. In this case Eq. (27) again holds and for 
description of the cascade relations formally identical with relations (15d) to (24d), 
(34) and (35a,b) are obtained. Granulometric composition of the product is again 
plotted for condition (39) in Fig. 2. The requirement usual in literature according 
to which nucleation at constant supersaturation in all stages should take place only 
in the first stage is of course rather irrational. Anyway, we are presenting conse
quences such condition would have on the production rate of the crystallizer. In this 
case the balance of the number of crystals (30) for condition (39) becomes 

(57) 

Simultaneously the supersaturation balance (5) holds which at neglecting the nuclea
tion term can be written 

i.e. 

k 

P = kg(l1c)g I Ai , 
i=l 

• ,_ (I<; - 1)! ~ (i + 1)! 
P = 3Lmk Lp . --- L.. - - - . 

(I<; + 1)! i = 1 (i - 1)! 

(58) 

(59) 

By solving Eqs (57) and (58) and by their arrangement relation (50) is again obtained 
for the dependence of Lp on P, in which the constant (J has in comparison with Eq. 

(51) a slightly simpler form 

_ (3g/n) + 1 ((k + 2) !)-g/n 
(Jk = B(zLn) . (k _ 1)! . (51a) 

Eq. (17d) may be written for the surface area of crystals present in a unit mass of 
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solution in the i = th stage of the cascade. According to Eq. (5b) the allowable 
supersaturation rate and surface area of crystals Ai are directly proportional. From 
Eqs (5b), (31a) and (17d) we obtain 

sdp = i2 (~+ 1)! (± i2 (~+ 1)!)-1 
(! - 1)! i=i (I - 1)! 

(60) 

Values sdp calculated from Eq. (60) as function of the serial number of the i-th 
crystallizer in a k-stage cascade are plotted in Fig. 5 on the right. It is obvious from the 
given values that a substantial part of the capacity (e.g. 92% for a two-stage and 62% 
for a five-stage cascade) is concentrated in the last stage of the cascade. Situation is 
slightly better than with the analogical model with nucleation in all stages but neither 
here the distribution of capacities is satisfactory. 

If all stages of a cascade should operate at constant supersaturation and the nuclea
tion in the second and next stages should not take place, the assumption that at other
wise same conditions the nucleation would take place in the first stage only is rather 
irrational and thus the model according to which nucleation is not taking place 
in the cascade at all and nuclei are entering the first stage in the feed is more accept
able. If we introduce into the cascade operated at constant supersaturation ~c corres
ponding to the linear crystallization rate Lin a unit mass of solution No = not (61) 
of crystal nuclei, the granulometric composition of the product will be again expressed 
by relation (20d) and the mean size of product crystals Lp will be given by Eq. (35b). 
Under these conditions the capacity of the cascade is determined by the mass of the 
solid phase present in the last stage, so that 

(62) 

where value mk is given by relation (18d). The operating supersaturation must be 
chosen very low so as the nucleation in the cascade practically does not take place. 
If we require e.g. the number of newly formed crystal nuclei to represent maximally 
10% of the total number of crystals introduced, we may write on basis of Eqs (43) 
and (61) 

(63) 

and to determine from this equation the maximum value of L. Distribution of the 
production rate among individual stages of the cascade will of course be equally 
·disadvantageous as with the assumption of nucleation taking place in the first stage. 

A Simple Agitated Continuous Crystallizer 

All relations presented in the preceding parts of this study are for k = 1 reduced 
to relations describing a simple continuous crystallizer. Iffrom Eq. (27) the dimension-
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less time is defined (here identical with the dimensionless crystal size) 

z = tits = tvlV = LI(its) 

the following relations are obtained 

G~l) = 100(1 + z + z2/2 + z3/6) exp ( - z) , 

The balance of number of crystals (2S) is simplified to 

1835 

(64) 

(26g) 

(1Sg) 

(17g) 

(18g) 

(19g) 

(20g) 

(21g) 

(22g) 

(24g) 

(32g) 

(4Sa) 

By solving Eqs (2Sg) and (4Sa) with balance equations for supersaturation (Eqs 
(5)-(7)) we obtain 

(SOa) 

It can be easily proved that for Lp ;?; 4Ln negligence of the fraction on the left hand 
side of Eq. (SOa) will not cause an error larger than 10% so that Eq. (50) is again 
obtained with the value of the system constant given by 

(SIb) 
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DISCUSSION 

Practically with all models explicite relations have been obtained for calculation 
of size distribution of the product crystals and other characteristic quantities. On the 
other hand calculation of the production rate of agitated crystallizers is in general 
rather complex and it is necessary to carry it out step by step for individual stages 
of a cascade. Only with the simplest of models explicite relations have been obtained 
enabling direct calculation of the dependence of the mean size of product crystals 
on the crystallizer capacity. It is interesting that all dependences are described by the 
same equation differing fO F individual models only by the numerical value of con
stant CT. 

As concerns the practical application a serious problem arises how to select a model 
of the cascade which corresponds to optimum conditions. Optimum may be here 
defined on basis of these practical requirements: a) as large as possible production 
rate of the cascade, related to the constant total volume; b) as large as possible 
mean size of product crystals which enables their easy separation and washing; c) 
as uniform as possible size distribution of product crystals which is simplifying its 
separation15 ,16 and its further handling. 

As it results from comparison of the corresponding relations for the granulometric 
composition of the product, the range of crystal sizes is smaller for nucleation taking 
place only in the first stage than for nucleation taking place in all stages. In this case 
the product becomes more uniform with increasing number of stages, which is espe
cially obvious with relatively small number of stages. From this point of view only 
models where nucleation takes place only in the first stage can be considered. The 

TABLE II 

Values Vk/Vj Calculated from Eq. (67) for an Optimum Cascade of Agitated Crystallizers with 
the Capacity Equally Distributed among Individual Stages of the Cascade 

k = 1 4 9 10 

12 54 160 375 756 1372 2304 3645 5500 
2 4·5 13·3 31 '3 63 115 192 304 458 

2·9 6·9 14 25 ·4 42·7 67·5 102 
4 1 2·3 4·7 8·6 14·4 22·8 34·4 
5 2·0 3·7 6·1 9·7 14·7 

1 1·8 3·0 4·8 7'3 
1·7 2'7 4·0 
1 1-6 2·4 

9 1·5 
10 
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requirement of maximum capacity with as large as possible mean size of crystals may 
be formulated by stating that the mean surface area of crystals should be as large as 
possible. As the model of nucleation, taking place only in the first stage at different 
supersaturation in individual stages, is more general than the model presuming the 
same saturation in all stages, this condition is formulated by use of equation 

i-I(L' - )i-2(L' 3 - 3 L'3 - 3 ) 
Ai = 2[3 L }sj . j tsj - i tsi . 

j=l n (L}sj - Lltsl) 
1= I 
I * j 

(22c) 

As it is obvious from this equation, the serial number of the stage (with the exception 
of i = 1) is of no importance, and so it is sufficient when maximalisation of Ai is 
made for the first two stages of the cascade only: 

(22h) 

From conditions 

an explicit solution L Itsl = L2ts2 (27a) is obtained, which means that condition 
Lts = const. results not only in a considerable simplification of the mathematical 
description of the cascade but- which is more important - in optimization of its 
operation. 

On the basis of the above made considerations two possibilities remain for selection 
of the optimum solution of the cascade i.e. the models which are in this study describ
ed by equations of the types d) and f). With the latter model distribution of the 
cascade production rate to individual stages is not uniform as was demonstrated 
in Fig. 5 so that neither this model is the most suitable for industrial application 
and thus as the optimum model remains that one with nucleation taking place only 
in the first stage, when sizes of individual crystallizers are with supersaturation 
related by the condition Lts = const. 

With this optimum model the condition of constant product Lts is fulfill~d by 
designing the volumes of individual stages of the cascade indirectly proportional to 
the corresponding linear crystallization rate (or to the g-th power of supersaturation). 
For illustration let us consider the case with supersaturation rate uniformly 
distributed among all stages of the cascade. Eq. (56) then becomes 

P = k. s . (56a) 
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The balance of supersaturation (5b) holds simultaneously, from which it results 

(5c) 

so that the relation of ratios may be written 

(66) 

which with substitution for the surface area of crystals from relation (17d) results in 

(67) 

Values of vkjvj calculated from this relation are given in Table II. It is obvious from 
this Table that sizes of individual stages of the cascade at given conditions consider
ably decrease toward the beginning of the cascade so that the first stage (especially 
in cascade crystallizers with greater number of stages) is very small and operates 
more as a source of crystal nuclei than as an actual crystallizer. 

LIST OF SYMBOLS 

Note: kgo are kg of free solvent i.e. excess of solvent to its mass stoichiometrically bound to the 
crystallizing matter (e.g. hydrate). The unit mass of suspension contains 1 kg of free solvent. 
For simplification of dimensions symbolc = kg/kgo is used. 

A surface area of crystals in a unit mass of suspension (m2 c/kg) 
Ap ' mean surface area of product crystals (m2) 

B system constant defined by Eq. (52) (m c - gin S(g/n) -1) 

C concentration (kg/kgo) 
!1c supersaturation (c) 
G~k) cummulative granulometric product composition (% of sizes larger than the given dimension) 
g order of kinetic equation of growth 
h,i,j,t summation symbols, serial number of the stage in the cascade 
K system constant defined by Eq. (43a) (s(n/g)-1 kg- 1 m- n/g c) 
k total number of crystallizers in the cascade 
kg rate constant of crystal growth (kg m - 2 S -1 C - g) 

k n rate constant of nucleation (c1 - n S -1) 

L characteristic dimension of crystals (m) 
Ln characteristic dimension of crystal nuclei (m) 
Lp mean size of product crystals, defined by Eq. (24) (m) 
!1L growth increment of the characteristic crystal size (m) 
L linear crystal growth rate (m/s) 
m mass of crystals in a unit mass of suspension (c) 
m + mass of crystals with sizes larger than L in a unit mass of suspension (c) 

mp mean mass of product crystals (kg) 
order of kinetic nucleation equation 

n population density of crystals (m -1 kg -1 c) 
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no population density of crystal nuclei (m -1 kg -1 c) 
n(L) distribution function of population density of crystals (m- 1 kg- 1 c) 
N number of crystals in a unit mass of suspension (c/kg) 
N+(L)number of crystals with sizes larger than L in a unit mass of suspension (c/kg) 
N n number of crystal nuclei originating in a unit of time in a unit mass of suspension (c kg -1 S ~ 1) 
Np number of product crystals removed per unit of time from a unit mass of suspension 

(ckg- 1 s-1) 
P specific production rate of crystallizer (c s - 1) 

supersaturation rate (c s -1) 
time (s) 

~ mean residence time of solution in the crystallizer (in one stage) (s) 
V crystallizer size (kgo) 

input rate (kgo/s) 
dimensionless residence time of crystals in one cascade stage 

z dimensionless residence time of crystals of size Lp in one stage of the cascade 
volume-based shape factor 

P surface-based shape factor 
f/J1,f/J2 , ({!3,f/J4 functions defined by Eqs (32a), (33), (40), (49) 
(lc density of crystals (kg/m3

) 

cr system constant defined by Eq. (51) (m(3g/n)+2 c- s/n s(g/n)-I) 

SUBSCRIPTS 

9 growth 
h,i,j,l serial numbers of stages 
k last stage in the cascade 
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